Enrollment No: Ex	xam Seat No:
-------------------	--------------

C.U.SHAH UNIVERSITY

Winter Examination-2015

Subject Name: Transform Theory

Subject Code: 4SC05TTE1 Branch: B. Sc. (Mathematics)

Semester: 5 Time: 02:30 To 05:30 Date: 11/12/2015 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:**

(14)

- Evaluate $\int_0^\infty e^{-3t} t dt$.
- Check whether given function is even or odd? **b**)

$$f(x) = \begin{cases} 0; & -2 < x < -1 \\ k; & -1 < x < 1 \\ 0; & 1 < x < 2 \end{cases}$$

- State First shifting theorem. c)
- In the Fourier series expansion of f(x) = |x| in $(-\pi, \pi)$, the value of b_n is **d**)
- $L[f'(t)] = \dots$ e)
- If $F(\lambda)$ is the Fourier transform of f(t), $F[f(x-a)] = \dots$ f)
- $L^{-1}\left\{ \int_{s}^{\infty} \bar{f}\left(u\right) \, du \right\} = \dots \dots$
- Define: Periodic function.
- Write formula of $Z(a^n)$. **i**)
- **j**) Write formula of Inverse Fourier transform.
- Finite Fourier cosine transform of f(x) = 1 in $(0, \pi)$ is zero. Determine whether k) statement is True or False?

Page 1 || 3

- l) Z-transform of unit impulse sequence is $\frac{z}{z-1}$. Determine whether statement is True or False?
- **m**) If f(t) is a periodic function with period T, then $L[f(t)] = \int_0^T e^{-st} \cdot f(t) dt$. Determine whether statement is True or False?
- n) Z-transform is linear. Determine whether statement is True or False?

Attempt any four questions from Q-2 to Q-8

- Q-2 Attempt all questions (14)
 - a) State and prove Convolution theorem. Apply convolution theorem to evaluate $L^{-1}\left\{\frac{1}{(s-4)(s+3)}\right\}$. (07)
 - **b)** Find the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$. (07)
- Q-3 Attempt all questions (14)
 - a) State and prove Euler's formulae for Fourier series expansion of a function f(x). (07)
 - **b)** Find the Fourier cosine transform of $(x) = \frac{1}{1+x^2}$. (07)
- Q-4 Attempt all questions (14)
 - a) Find the Laplace transform of $f(t) = t^3 + e^{-3t} + t^{\frac{3}{2}} + 3^t$. (05)
 - b) Find the Fourier series of the function $f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$. Also deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$.
 - c) Prove that $Z[\cos n\theta] = \frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$ and $[\sin n\theta] = \frac{z\sin\theta}{z^2-2z\cos\theta+1}$. (04)
- Q-5 Attempt all questions (14)
 - a) Find the Laplace transform of $f(t) = \frac{\cos at \cos bt}{t} + t \sin at$. (05)
 - **b**) If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, then evaluate u_2 and u_3 . (05)
 - c) Find the finite Fourier cosine transform of f(x) = 2x, $0 \le x \le 4$. (04)

Q-6	Attempt all questions		(14	.)
-----	-----------------------	--	-----	----

a) Find the Laplace transform of (05)

i)
$$f(t) = \begin{cases} 0; & 0 \le t < k \\ 1; & t \ge k \end{cases}$$
, ii) $f(t) = [t]$

- b) Find sine and cosine integral of $f(x) = e^{-kx}$. (05)
- c) Find $Z[^{n+p}C_p]$, $(0 \le p \le n)$. (04)
- Q-7 Attempt all questions (14)
 - a) Prove that if $Z[u_n] = U(z)$, then $Z[u_{n-k}] = z^{-k} U(z)(k > 0)$. (05)
 - **b)** Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+3)}$. (05)
 - c) Express f(x) = x as a half range sine series in 0 < x < 2. (04)
- Q-8 Attempt all questions (14)
 - a) By using the method of Laplace transform, solve the initial value problem $y'' + 2y' + y = e^{-t}$; y(0) = -1 and y'(0) = 1.
 - **b**) Prove that $F_s(x f(x)) = -\frac{d}{d\lambda} [F_c(\lambda)] \text{ and } F_c(x f(x)) = \frac{d}{d\lambda} [F_s(\lambda)].$ (05)
 - c) Find $Z\left[3n-4\sin\frac{n\pi}{4}+5a\right]$. (04)